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Formal definition

The detection function describes the relationship between distance 
and the probability of detection 

Formally denoted by g(x) (usually referred to as ‘g of x’)

g(x) = the probability of detecting an animal, given that it is at distance x 
from the line

Key to the concept of distance sampling



The detection function, g(x)
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Modelling g(x)

g(x) represents the underlying relationship between detection 
probability and distance

However, the true form of g(x) is unknown to us

We need to estimate g(x) by fitting a model to our data

i.e., we need to find a curve that will approximate the underlying 
relationship



Criteria for robust estimation
Four main criteria for a good model:

1. Model robustness – use a model that will fit a wide variety of plausible shapes for g(x)

2. Shape criterion – use a model with a ‘shoulder’ – i.e. g'(0)=0
3. Pooling robustness – use a model for the average detection function, even when many 

factors affect detectability

4. Estimator efficiency – use a model that will lead to a precise estimator of density



Key functions

The first step in constructing a model for g(x) is to choose a key function

This determines the basic model shape

Three key functions available in ds():

1. Uniform
2. Half normal

3. Hazard rate



• Model formula:

• Parameters = 0

• Shape criterion?

Yes

• Model robust?

No

Key functions (cont.)

w  x 1, = g(x) 



Key functions (cont.)

• Model formula:

• Parameters = 1

• Shape criterion?

Yes

• Model robust?

Somewhat
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Key functions (cont.)

• Model formula:

• Parameters = 2

• Shape criterion?

Yes

• Model robust?

Yes
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Key functions in Distance
Load package (at start of R session)

library(Distance)

Fit detection function
ds(data, key)

Contains column called 
distance

Options are “hn”, “hr” and “unif”
E.g. ds(data, key=“hn”)



Adjustment terms

Models can be made more robust by adding a series of adjustment terms 
(also called series expansion or series adjustment) to the key function

Key function × (1 + Series)

Series = α1×term1 + α2×term2 + ….. etc.

The αi parameters must be estimated

Resulting curve model is scaled so that g(0)=1

The number of adjustment terms needs to be chosen



Adjustment terms
Distance allows the selection of three types of series (one type per model)

Series adjustmentKey function
Cosine*Uniform*

Hermite polynomial†Half normal†

Simple polynomialHazard rate



Half normal key, single cosine adjustment term



Half normal key, two cosine adjustment terms



Adjustments in Distance

Fit a half normal detection function with cosine adjustments

ds(data, key=“hn”, adjustment=“cos”)

Options are 
• “cos” - cosine
• “herm” – Hermite polynomial
• “poly” – simple polynomial
• NULL – no adjustments will be fitted



Adjustment terms – how many?
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Note: There is a monotonicity constraint in Distance that is switched on by default to prevent detection functions from 
increasing.  The constraint had to be turned off to produce the third plot.  The third plot is for demonstration only – it would
not be a good detection function to choose (unless there was a biological reason why detection probability would increase 
at those distances).



How many parameters?

•Models with too few parameters will not be flexible enough to describe 
the underlying relationship

•Adding parameters will improve the fit

•But models with too many parameters will be too flexible and will also 
describe the random noise in the data

•We generally seek models with an intermediate number of parameters



How many parameters?

This problem can also be expressed as a 
trade-off between bias and variance

Models with too few parameters tend to 
produce estimates with low variance and 
high bias

Models with too many parameters tend 
to produce estimates with low bias and 
high variance (note the increasing CV for 
the estimate of Pa on the earlier slide)
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Truncation

Need to choose the value of w (right truncation)

Detections at large distances contribute little to estimating the shape of g(x) at small 
distances (i.e. the shoulder) and may lead to poor fit and high variance

Typically, we might truncate around 5% of observation for line transects (perhaps nearer 
10% for point transects)

Can also use estimated values of g(x) from fitted model as truncation criterion; truncate at 
w when g(w)=0.15

See supplement to Practical 2 regarding truncation

௔



Three ways to think 
about detectability in 
distance sampling



1. The detection function, g(x)

g(x) = probability of detecting an animal, given that it is at distance x from the line

aP̂ w

dxxg
w


 

1

)(ˆ
0

g(
x)

x w

1.
0

We assume 
g(0) = 1

Note: histogram bars scaled

area under curve
area under rectangle



2. Effective strip (half) width, μ
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a strip transect out to some distance μ.

μ

g(
x)

x w

1.
0

Line transect out to w Strip transect out to μ

The ESW, μ, is the distance at which as many objects 
are detected beyond μ as are missed within μ

Area 
covered

Area 
effectively
covered

w

μ̂
area under curve

area under rectangle



3. The probability density function, f(x)

f(x)dx = probability of observing an animal between distance x and x+dx, given 
it was observed somewhere in (0,w)

f(x) is called the probability density function (pdf) of the observed distances

Because observations are between 0 and w, the area under f(x) is 1.0 
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Histogram bars are scaled so that 
area under histogram is 1.

Area under f(x) is 1



Why is f(x) useful?
1. Useful for point transects, as it gives the expected distribution of detection distances 

True distribution of animals

Detection function, g(x)

Observed distribution, f(x)
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Why is f(x) useful?
2. Gives another way to estimate Pa

Lots of statistical machinery to fit pdfs, so this is the way ds() does it.
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Formulae – line transects

Three ways to think about line transects
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2. Effective strip (half-)width, ESW, μ.
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Note where the “hats” are found on the right hand side of equations



Notation – line transects
Known constants and data:

k = number of lines

lj = length of jth line, j=1,...,k

L = Σlj = total line length

n = number of animals or clusters detected

xi = distance of ith detected animal or cluster from the line, i=1,...,n

w = truncation distance for x

A = size of region of interest

a = area of “covered” region = 2wL

si = size of ith detected cluster, i=1,...,n



Notation – line transects
Parameters and functions:

N = population size / abundance of animals

Ns = abundance of clusters

D = density = animals per unit area = N/A

Ds = density of clusters

g(x) = detection function

f(x) = probability density function (pdf) of observed distances

f(0) = f(x) evaluated at 0 distance

μ = effective strip (half-)width

Pa = probability of detecting an animal or cluster given it is in the covered area a

E(s) = mean size of clusters in the population


